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Abstract— High performance cognitive environments such as 

surgery or driving pose extensive constraints on efficient 

perception of salient information. In such environments it is 

beneficial to track physiological signals from the operator and 

predict errors and their type before they occur and alert the 

operator to take preventive action. The challenge lies in 

interpreting complex neural data obtained through sensors such 

as EEG signals and subsequently alerting the subject to possible 

errors. This paper presents a EEG based analysis system coupled 

with a haptic glove and visual feedback based alert system to 

provide such functionality. The haptic glove was made from six 

vibratory motors placed on fingers and palm. The EEG system 

consisted of a Bluetooth EEG cap that monitored attention 

distraction and drowsiness. Results show that the hand based 

system for delivering visio-haptic signals to alert users to 
impending errors can help in avoiding human errors. (Abstract) 

Keywords-Ambient Haptics, Cognitive Alerts, Glove based 

system 

I.  INTRODUCTION  

High cognitive load environments pose a challenging 
problem for human computer interaction designers. These 
environments require sophisticated decision making and 
reasoning capability under time constraints and usually in the 
presence of noise and other artifacts. Human error in high 
performance cognitive environment can often cause significant 
damage and unfortunately is very prevalent. For example, in 
medical environments which are widely recognized to be high 
cognitive load environments a large number of errors are 
reported each year, many of which lead to fatalities. Error 
management, recovery and mitigation are hence an important 
part of technology based interventions in these environments.   

One of the major challenge lies in monitoring the 
environment and human operator. Monitoring environments 
has traditionally been accomplished by human observers. There 
is significant literature in the psychological realm on using 
observations, interviews and propositional analysis for 
monitoring environments and especially cognitive 
environments. However, lately technological solutions for 
monitoring environments have been gaining momentum. 
Advent of computer vision technology, radio frequency 
identification tags has allowed for institutions and agencies to 

develop automated monitoring systems for the environments. 
Such systems aim to capture variations in an environment in an 
automated manner that may reasonably predict or indicate 
errors. Monitoring the human operator often requires 
specialized solutions that go beyond environment monitoring. 
Often humans do not exhibit percievable changes through 
environment monitoring and by the time a perceivable change 
is seen error may well have occurred. It is hence required to 
develop systems that can monitor an individual through other 
means. One such methodology lies in observing a user action in 
an environment and then developing causal models and 
predictive models for errors based on that action. An example 
of this type of monitoring would lie in communication graphs 
that show individuals as nodes and edges as being 
communication lines. Such graphs can often be useful in 
predicting communication errors which are very common in 
high risk cognitive environments.  Another type of monitoring 
lies in employing physiological and cognitive signals from 
human operators. These systems aim to go beyond observable 
parameters and enable tracking of factors such as fatigue and 
experience. 

An operators’ mental state is an important variable in error 
prediction and monitoring. However the challenge lies in 
development of robust models of errors based on physiological 
modeling. Electroencephalography (EEG) based systems that 
record electrical potential from the scalp are increasingly 
gaining popularity as a means to monitor neural activity. In this 
paper we propose a model that automatically determines levels 
of workload, distraction, and drowsiness and models their 
temporal variations to determine the type of error. There are 
devices that use physiological means other than EEG to 
measure workload.  This includes using a head mounted eye-
tracker to measure pupil size and galvanic skin response 
biosensors to measure skin conductance, measuring respiration 
rate, heart rate, eye blinks, and eye fixation fraction. Iqbal et al. 
[1] used pupil size to measure mental workload during reading, 
mathematical reasoning, searching, and object manipulation 
tasks  and found out that pupil size increases with cognitive 
tasks and decreases back to normal levels after completion of a 
task. Khawaja et al. [2] used skin conductance to measure 
workload during a reading and comprehension task and found 
it to be directly proportional to cognitive workload. Wierwille 
et al. [3] used 16 measures which 5 included physiological 



measurements such as respiration rate (RR) , heart rate (HR), 
pupil diameters (PD), eye blinks (EB), and fixation fraction 
(FF) and found out that FF is the only one that produces 
changes and is reliably able to discriminate between high and 
low levels of workload.  

EEG is better than above listed devices because in addition 
to workload EEG can measure subtle shifts in alertness and 
attention that can be identified and quantified on a second by 
second basis. EEG shifts are related to task complexity and task 
difficulty [4]. EEG is better than pupil response system used by 
Iqbal et al. [1] in that it is not affected by headband slip and 
vibration. The disadvantage of using EEG is that a baseline test 
is required before values of workload, distraction, and 
drowsiness can be measured. However only a single baseline 
session can serve to provide the basis for multiple sessions and 
hence baseline needs to be collected only in the beginning of 
the experiments.  

Providing feedback to the user is important and helps the 
user and system to recover sooner from errors produced. 
Feedback can be provided in audio, visual, haptic modalities.  
This study focuses on visio-haptic mode of providing feedback. 
Specifically we developed a multipoint hand haptic feedback 
system to provide vibratory input on the physiological state of 
the operator to the operator themselves. This system provided a 
ubiquitous method to give users feedback on their own state. 
We developed a system for users to select hapticons that 
represent different events in their mental states. Hapticons are 
haptically delivered signals associated with certain pieces of 
information. These hapticons helped users get feedback when 
error prone situations were being observed and alerted them to 
take measures to avoid errors.  

II. RELATED WORK 

The use of electroencephalography (EEG) has been around for 

several decades and doctors have used it for several clinical 

applications. Today the typical EEG device for scientific use 

including the one used in our experiment is wireless and the 

electrodes make contact with the scalp though gel which is 

dispersed through the cap. The EEG cap does not need any 

tape to keep it secure on the head; instead straps are used to 

make sure the cap is snug. Digitization has eliminated the need 

for paper and ink and storage of EEG records. Every time a 

records needs to be examined, it can simply be recreated on a 

computer and manipulated by software to remove artifacts 

created, which was not an option with the paper and ink EEG 

devices.  The amount of artifacts is monitored and the 

technician is notified accordingly. Also the signal is amplified 

close to the sensors and sent to a computer. Operating the EEG 

cap and the software that is provided for EEG monitoring is 

easy to learn compared to the older EEG devices. These 

factors have enabled a rapidly growing use of EEG devices in 

human computer interaction.  

Using the digital EEG device extensive research has been 
done. Berka et al [5] has created an integrated hardware and 
software solution for acquisition and real-time analysis of EEG 
to monitor indexes of alertness, cognition, and memory. Three 
experiments were performed to identify EEG indices with 

changes in cognitive workload: The warship commander task 
[5], a cognitive task with three levels of difficulty and 
consistent sensory inputs and motor outputs, and an image 
learning and recognition memory task. For each of the 
experiments, sensor headset receives six channels of EEG data 
using bipolar or unipolar montage. The data is sampled at 256 
samples per second with a band pass from 0.5 Hz to 65 Hz 
obtained digitally. To decontaminate artifacts, 60 Hz notch 
filter is applied to all EEG channels and three sets of filtered 
EEG data are derived using FIR filters. For each epoch of the 
four class model derived with data from three baseline tasks, 
five variables were computed: the logged PSD, the relative 
power compared to total power, and the z scores for Eyes 
Open, Eyes Closed, and Psychomotor Vigilance Task. The 
study showed that the percentage of high vigilance 
classifications during Warship Commander Task decreased as 
participants gained more training. The results from the warship 
task showed that the B-Alert indices are related to cognitive 
effort associated with task difficulty and not to the number 
sensory inputs or the amount of motor input required for the 
levels. The three-level cognitive task evaluated the EEG 
indices without the sensory and motor confounds associated 
with workload levels in the warship task. For the image 
learning and recognition memory task, it was confirmed that 
the percentage of high vigilance was significantly higher during 
the image memorization period compared to the recognition 
period [2]. These experiments showed that it is possible to 
monitor cognitive states of users through EEG in common 
human computer interaction tasks. 

Significant work has been done in the area of error 
classification using EEG. Lotte et al [6] reviewed the various 
classifiers that have been used as linear classifiers and non-
linear classifiers. The first group consists of linear discriminant 
analysis and support vector machines. The second group 
consists of artificial neural networks, hidden markov models 
(HMMs), and Bayesian quadratic classifiers [6].  

Guger et al. [7] performed experiments for detection of left 
or right hand movement by EEG signals. The algorithm used 
for classifying hand movement was linear discriminant analysis 
in an adaptive auto regression model. Subjects imagined left or 
right movement without actually moving their hands and arms 
after the presentation of an arrow pointing to the left or right of 
the screen. The classification result was provided as feedback. 
After several sessions with feedback the classification accuracy 
for detecting errors became 70-95% [7]. Another study done 
using linear classification was to predict laterality in single 
trails of EEG. Subjects were asked to respond to targets with 
the right index finger and non targets with the left index finger. 
Error potentials from the EEG runs were classified and more 
than 85% of errors were detected within 300ms after response 
in seven out of eight subjects [8]. Also error related negativity 
related to human responses has been detected using linear 
classification algorithms particularly linear discriminators. The 
rate of correct detection of the ERN for offline processing has 
been 79% within 100ms for the study [9].   

Artificial neural networks are the next step when it comes 
to better classification of EEG signals and reduced error rates 
using non linear classifiers. Pfurtscheller et al. [10] conducted 
the same experiment mentioned in [7] with band power 



learning vector quantization, a type of neural network based 
classification and the results with delayed feedback provided 
minimal online classification errors of 10%,13%,14%, and 17 
% across four subject after several sessions. A more recent 
study done by Subasi et al. [11] used multilayer perception 
neural networks (MLPNN) in classifying EEG signals for a 
novel and more reliable classifier. The MLPNN used consisted 
of one input layer, one hidden layer with 21 nodes and an 
output layer. The classification accuracy of the MLPNN with 
Levenberg-Marquart algorithm was 93% in predicting normal 
versus epileptic data. 

HMMs have recently become known because of the success 
they achieved in solving speech recognition.  The use of 
HMMs in Brain Computer Interfaces (BCI) can build on that 
success because error classification using EEG is similar to 
speech recognition. The similarity is that both can be 
appropriately modeled using a stochastic approach rather that a 
deterministic approach. HMMs were used in a single trial EEG 
data and compared to Fishers linear discriminant classification 
and proved to have a lesser error rate [12].   Also HMMs were 
used in another study in a form of a temporal hidden markov 
tree to improve the detection of error related negativity [9]. 
Zhong and Ghosh [13] have proven that multivariate HMMs 
based on multiple channels of EEG can better capture data 
from multiple electrodes placed on the same head. They also 
used coupled HMMs to further improve error rate reduction. 
Rosen et al [14] applied Discrete HMMs to classify hand 
movement into expert and novice surgeons groups. The 
classification accuracy of their model was 87.5%.  

The above mentioned algorithms and systems work with 
high resolution EEG data. However in many cases this type of 
resolution and data is not available. Our domain lies in 
developing augmented human computer interfaces that utilize 
low resolution EEG data for enabling preventative decisions. 
This is fundamentally a different problem and requires different 
pattern recognition solutions.  

Feedback through haptic interfaces has been an active 
research area [15-18]. Research involves probing the placement 
of haptic devices, investigating stimulus response 
compatibility, type of haptic signals, the duration of haptic 
signals and the number of haptic feedback devices. A key 
element pertaining to this research is investigating these factors 
for applying haptics in a complex environment. Complex 
environments are characterized by several confounding factors 
that complicate application of any technological interventions. 
In general due to the emergent nature of complex 
environments, any technological intervention has to adapt to a 
users’ preference and styles. Further, the user attentional focus 
should not be disturbed by feedback. In research done by Kahol 
et al. [19], it was shown that haptic feedback actually is 
feasible for complex environments as it does not disturb a 
users’ attention and gives feedback in a natural and ubiquitous 
manner. However, it is yet to be determined whether haptic 
feedback can actually serve as a feedback on users’ own mental 
state. A key issue is to see if the feedback helps subjects correct 
their behavior or does the feedback affects the operator in a 
detrimental manner. This is also true when considering 
multimodal systems that involve vision and haptics.  

III. CONCEPTUAL FRAMEWORK 

Figure 1 represents the overall framework for the Error 

Classification and Feedback System. EEG is employed to 

provide a  

 
Figure 1.  Conceptual Framework 

feedback system that can analyze cognitive state using 

temporal classification of errors into slips and mistakes. 

Broadly, errors can be classified into two categories: 

procedural errors and proficiency errors.  Procedural errors 

are those that occur while carrying out prescribed or normative 

sequences of action, while proficiency errors are related to a 

lack of skills, experience or practice [20].  A slip is a 

procedural error which occurs due to perceptual reasons where 

in a subject may not pick up cues or may inadvertently forget 

some details. Slips are the consequences of execution 

problems meaning that the plan is correct but the execution is 

wrong because the action is not appropriate to the intention. A 

mistake is a cognitive error that occurs due to lack of 

knowledge [21]. Mistakes can classified as proficiency error 

and are due to planning problem meaning that the action is 

executed according to plan and intention but the plan is wrong. 

An automated classification system that can categorize errors 

into slips and mistakes could prove to be a highly useful tool 

in high cognitive load environments. 

EEG provides a reliable physiological signal used in 

conjunction with the temporal classifier, hidden markov 

models, to be able to predict errors and their type before they 

occur and alert the user to take preventive action. Section A 

explains EEG data capture device worn by the human operator 

and the setup procedure for each experiment. Section B 

examines the cognitive state determination and how workload, 

distraction, and drowsiness levels are determined. Section C 

explains how temporal modeling was used to classify slips, 

mistakes, and non errors. Section D examines the 

methodology for feedback unit used in the systems.  
 

A. EEG Capture Device. 

A battery powered wireless EEG sensor headset B-Alert 
was used to acquire six channels which included bipolar 
recordings form F3F4, FzPO, CzPO, FzC3, C3C4, and F3Cz. 
The EEG head set was connected via Bluetooth to the B-Alert 
EEG monitoring system to monitor levels of distraction, 
drowsiness, workload, and engagement. The first procedure 



done in testing was to acquire baseline EEG data. The subject 
participated in three tests: the first being a 20 minute 3-choice 
vigilance task (3C-VT). Second, a 5-min test with eyes open 
(EO) and last, a 5 min test with eyes closed (EC). The data 
received in these test was analyzed by the B-Alert EEG 
software and data quality was accessed. The three parts of the 
baseline test account for the individual differences in brain 
patterns. This helped account for different users. It may be 
noted that baseline are needed only once per subject.  

B. Cognitive State Determination 

Cognitive state changes were identified by using an 

algorithm based on linear and quadratic discriminant function 

analyses. The algorithm is defined in [4] in detail but we 

briefly present the system. The EEG signal from the 7 channel 

system is denoised using Gaussian smoothing. After the 

smoothing we need to decontaminate the EEG signal and 

reject EEG signals during eye blinks and excessive movement 

activity. Wavelet analyses are applied to detect excessive 

movements and to identify and decontaminate eye blinks. 

Thresholds are developed for application to the wavelet power 

in the 64 – 128 Hz bin to identify epochs that should be 

rejected for excessive movement. The wavelets eye blink 

identification routine uses a two-step discriminant function 

analysis. The discriminant function analysis classifies each 

data point as a control, eye blink or theta activity. Multiple 

data points that are classified as eye blinks are then linked and 

the eye blink detection region is established. Decontamination 

of eye blinks is accomplished by computing mean wavelet 

coefficients for the 0-2, 2-4 and 4-8 Hz bins from nearby non-

contaminated regions and replacing the contaminated data 

points.  

The EEG signal is then reconstructed from the wavelets 

bins ranging from 0.5 to 64 Hz. Zero values are inserted into 

the reconstructed EEG signal at zero crossing before and after 

spikes, excursions and saturations. EEG absolute and relative 

power spectral density (PSD) variables for each 1-second 

epoch using a 50% overlapping window are then computed. 

The PSD values are scaled to accommodate the insertion of 

zero values as replacements for the artifact. These PSD of 

these wavelets have proven utility in tracking both phasic and 

tonic changes in cognitive states, in predicting errors that 

result from either fatigue or overload and in identifying the 

transition from novice to expert during skill acquisition. We 

impose thresholds on PSDs to determine levels of attention, 

distraction and drowsiness. The thresholds were provided by 

the manufacturers and were calculated based on several 

experiments.  

 

C. Error Prediction 

Temporal modeling of the cognitive states was done using 

hidden markov models (HMMs). HMMs are probabilistic 

modeling tools employed for temporal sequence analysis, and 

have been widely used in gesture and speech recognition. 

Hidden markov models are doubly stochastic models that can 

be used to recognize any temporal or modeling sequence [22]. 

It is represented as a set of three sets of probabilities The 

Markov model is hidden because we don’t know which state 

led to each observations which is the only element available to 

us for training our system.  

 

We employed a continuous state HMM for the purposes 

of modeling errors. The states of the continuous HMM each 

have a mixture of probability density functions (pdf’s) to 

represent the probability of observing certain 

multidimensional, continuous data. Mixtures of Gaussian 

(normal) pdf’s are typically used to accurately model the 

state’s membership in the space of observation vectors.  

Mathematically, an HMM  can be represented by  

                   ),,(  BA                                      (1) 

where A refers to a set of transition probabilities, B refers to 

the probability distributions in a state and  refers to initial 

state probabilities. Baum Welch algorithm is employed for 

training an HMM.  In our case, we employed two separate 

HMMs for the two types of errors namely slips and mistakes.  

In order to determine the class of a test sequence we employed 

the forward backward algorithm.  

The HMMs were trained with one second epochs of 

distraction, attention and workload indices. We employed 2 

second, 5 second, 10 second, 15 second and 30 second 

window before the errors for modeling errors. The HMMs had 

4 states: the number of states being chosen empirically.  

Practically these windows will allow us to determine how 

soon we can predict that an error may happen. If an error can 

be predicted using 30 second window, then an operator could 

technically be warned 30 seconds before an error which can 

help them take precautionary measures.  

D. Feedback Mechanism 

In order to present feedback in real time we employed a 

custom haptic feedback glove. The glove contained a vibratory 

motor that can be programmed to present vibrations to the 

user. The glove contained six haptic motors: one for each 

finger and one for the palm. The feedback system can be 

programmed to give a variety of vibrations to convey to the 

user their performance.  

In order to give haptic feedback using the six unit 

feedback system we developed a system that presents a 

temporal signal to different vibrator motors to provide 

feedback to the user. We used a variety of feedback schemes 

to alert users to slips or error occurrence. We developed an 

interface where users could decide on the type of hapticons to 

alert users for impending slips or mistakes. Examples of 

hapticons include, a constant signal, a haptic heartbeat that can 

be given to a single motor or a combination of motor, haptic 

bumps and friction signals.  

We further augmented the feedback system with visual 

feedback through a color ball. The color ball on the monitor 

shows a visual representation of the mental state. The ball 



changes its color from green (no errors) to orange (slip) to red 

(mistake) to convey to the user feedback on their mental state. 

(Figure 2). 

 

 
Figure 2.  Visual and Haptic Feedback system. 

IV. EXPERIMENTS AND RESULTS 

We assembled a database of slips and errors in a 

simulation environment. The database included 80 samples of 

slips and 80 samples of mistakes and 80 samples of no errors 

event. EEG data from the database was processed as per the 

algorithm in section 3. Cognitive states were determined. We 

then employed a state vector to represent each one second 

epoch. Windows of two seconds, ten seconds, fifteen seconds 

and thirty seconds were taken before the occurrence of an 

event. Hidden markov models were chosen to have three states 

and three hidden markov models were trained; one for 

predicting slips, one for predicting mistakes and one for 

predicting no error event. 60 samples were employed for 

training and 20 samples were employed for testing the 

accuracy.  

Figure 3 shows the results obtained by the HMMs for 

each of the time windows. The 15 second time window 

yielded the most favorable results. Post analysis showed that 

most misclassification of errors were between slips and 

mistakes and only a few errors were predicted to be non error 

events. Further many of the non-error events classified as 

errors were classified as slips. These results are consistent with 

EEG literature that suggests that slips are not a result of 

knowledge but occur due to distractions or missing perceptual 

cues [23]. In the case of the human operator missing 

perceptual cues, the slips and non-error events can be identical 

hence causing the misclassification.   

The misclassification of mistakes as slips or vice verse 

suggests that a more robust approach may be needed to 

distinguish between the two models. One possible solution 

would be to add additional channels that may enable such 

analysis.   

A. Feedback 

In order to test the feedback system, we employed the 
following methodology. We chose the Tiger Woods Golf 
Game® as the virtual task. The game requires high vigilance 
from participants and it allows for both type of errors: slips and 
mistakes. We recruited 6 subjects for the study. Each 
participant played 18 holes. Out of all participants 3 were 
allowed to practice on even holes and 3 are allowed to practice 
on odd holes. The goal of practicing on every other hole is to 
differentiate between slips and mistakes mentioned in the 
introduction. Slips have a higher probability of occurring in 
holes were practice is allowed. Mistakes on the other hand, 
have a higher probability of occurring in holes were practice is 
not allowed. 

 

 
Figure 3.  Results of EEG Analysis System 

During the gaming sessions, subjects were given the 
feedback on whether they were about to make a slip or mistake 
through the visio-haptic system. We used the fifteen second 
window for the EEG analysis. We track the HMM’s probability 
outputs from the forward backward algorithm. A continuous 
feedback on the probability of an error is provided with the 
visual system and the haptic system delivers discrete signals 
when the threshold of probability is reached. Empirically it was 
determined that a threshold of 0.6 was sufficient to allow 
subjects to take precautionary measures.  Users were allowed to 
setup the hapticons to their preference. As all the participants 
were right handed, all the participants wore the glove in left 
hand. The visual feedback was provided by a screen kept on 
the side of the main screen on which the game was played.  

The subjects played 10 holes (5 prone to slips and 5 prone 
to mistakes) with the feedback and 8 holes without feedback. 
ANOVA was performed on scores on holes with and without 
feedback. The results (Figure 4) showed that subjects 
performed statistically significantly (p<0.05) better on holes 
with feedback.  

V. CONCLUSIONS 

This paper presents an automated system for error 

classification based on human physiological measures namely 



EEG. We use a multistage analysis algorithm that determines 

cognitive states and possible errors. Using this system it is 

possible to predict errors before they can happen and also 

reliably determine when an error has occurred. The feedback 

system uses visio-haptic sensations to enable users to self-

correct their behavior in the case of possible error. The visual 

feedback provides a constant signal to enable users’ to monitor 

their cognitive states while the haptic signal can serve as a 

discrete warning mechanism. Future work will involve further 

testing of the system and using this system in actual 

environments such as critical care environments and driving 

environments.  
 

 

Figure 4.  Results of Feedback Experiments with the Wii Golf Game. 
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